Chapter 4 Principle of Mathematical Induction

Vashu Panwar

Question 1:

Prove that following by using the principle of mathematical induction for all $n \in N$:

$$1+3+3^2+\ldots+3^{n-1}=\frac{(3^n-1)}{2}$$

Solution 1:

Let the given statement be P(n), i.e.,

$$P(n):1+3+3^2+\dots+3^{n-1}=\frac{(3^n-1)}{2}$$

For n = 1, we have

$$P(1) := \frac{(3^{1}-1)}{2} = \frac{3-1}{2} = \frac{2}{2} = 1$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$1+3+3^2+\ldots+3^{k-1}=\frac{(3^k-1)}{2}$$
(*i*)

We shall now prove that P(k+1) is true.

Consider

$$1+3+3^{2}+....+3^{k-1}+3^{(k+1)-1} = (1+3+3^{2}+....+3^{k-1})+3^{k}$$

$$= \frac{(3^{k}-1)}{2}+3^{k} \qquad [Using(i)]$$

$$= \frac{(3^{k}-1)+2.3^{k}}{2}$$

$$= \frac{(1+2)3^{k}-1}{2}$$

$$= \frac{3.3^{k}-1}{2}$$

$$= \frac{3^{k+1}-1}{2}$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 2:

Prove the following by using the principle of mathematical induction for all $n \in N$:

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \left(\frac{n(n+1)}{2}\right)^{2}$$

Solution 2:

Chapter 4 Principle of Mathematical Induction

Let the given statement be P(n), i.e.,

$$P(n):1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$

For n = 1, we have

$$P(1): 1^3 = 1 = \left(\frac{1(1+1)^2}{2}\right) = \left(\frac{1.2}{2}\right)^2 = 1^2 = 1$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$1^{3} + 2^{3} + 3^{3} + \dots + k^{3} = \left(\frac{k(k+1)}{2}\right)^{2} \dots \dots (i)$$

We shall now prove that P(k+1) is true.

Consider

$$1^{3} + 2^{3} + 3^{3} + \dots + k^{3} + (k+1)^{3}$$

$$= \left(1^{3} + 2^{3} + 3^{3} + \dots + k^{3}\right) + (k+1)^{3}$$

$$= \left(\frac{k(k+1)}{2}\right)^{2} + (k+1)^{3}$$

$$= \frac{k^{2}(k+1)^{2}}{4} + (k+1)^{3}$$

$$= \frac{k^{2}(k+1)^{2} + 4(k+1)^{3}}{4}$$

$$= \frac{(k+1)^{2} \left\{k^{2} + 4(k+1)\right\}}{4}$$

$$= \frac{(k+1)^{2} \left\{k^{2} + 4k + 4\right\}}{4}$$

$$= \frac{(k+1)^{2} (k+2)^{2}}{4}$$

$$= \frac{(k+1)^{2} (k+1+1)^{2}}{4}$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 3:

Prove the following by using the principle of mathematical induction for all $n \in N$:

Chapter 4 Principle of Mathematical Induction

$$1 + \frac{1}{(1+2)} + \frac{1}{(1+2+3)} + \dots + \frac{1}{(1+2+3+\dots n)} = \frac{2n}{(n+1)}$$

Solution 3:

Let the given statement be P(n), i.e., $P(n):1+\frac{1}{1+2}+\frac{1}{1+2+3}+\dots+\frac{1}{1+2+3+\dots,n}=\frac{2n}{n+1}$ For n=1, we have

 $P(1):1 = \frac{2.1}{1+1} = \frac{2}{2} = 1$, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$1 + \frac{1}{1+2} + \dots + \frac{1}{1+2+3} + \dots + \frac{1}{1+2+3+\dots+k} = \frac{2k}{k+1} \dots \dots (i)$$

We shall now prove that P(k+1) is true.

Consider

$$1 + \frac{1}{1+2} + \frac{1}{1+2+3} + \dots + \frac{1}{1+2+3+\dots+k} + \frac{1}{1+2+3+\dots+k+(k+1)}$$

$$= \left(1 + \frac{1}{1+2} + \frac{1}{1+2+3} + \dots + \frac{1}{1+2+3+\dots+k+(k+1)}\right) + \frac{1}{1+2+3+\dots+k+(k+1)}$$

$$= \frac{2k}{k+1} + \frac{1}{1+2+3+\dots+k+(k+1)}$$

$$\left[1 + 2 + 3 \dots + n = \frac{n(n+1)}{2}\right]$$

$$= \frac{2k}{k+1} + \frac{2}{(k+1)(k+2)}$$

$$= \frac{2}{(k+1)} \left(k + \frac{1}{k+2}\right)$$

$$= \frac{2}{(k+1)} \left(k + \frac{1}{k+2}\right)$$

$$= \frac{2}{(k+1)} \left(\frac{k^2 + 2k + 1}{k+2}\right)$$

$$= \frac{2}{(k+1)} \left[\frac{(k+1)^2}{k+2}\right]$$

$$= \frac{2(k+1)}{(k+2)}$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Chapter 4 Principle of Mathematical Induction

Question 4:

Prove the following by using the principle of mathematical induction for all $n \in N$:

$$1.2.3 + 2.3.4 + \dots + n(n+1)(n+2) = \frac{n(n+1)(n+2)(n+3)}{4}$$

Solution 4:

Let the given statement be P(n), i.e.,

$$P(n):1.2.3+2.3.4+\ldots+n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4}$$

For n = 1, we have

$$P(1):1.2.3 = 6 = \frac{1(1+1)(1+2)(1+3)}{4} = \frac{1.2.3.4}{4} = 6$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$1.2.3 + 2.3.4 + \dots + k(k+1)(k+2) = \frac{k(k+1)(k+2)(k+3)}{4} \dots (i)$$

We shall now prove that P(k+1) is true.

Consider

$$1.2.3 + 2.3.4 + \dots + k(k+1)(k+2) + (k+1)(k+2)(k+3)$$

$$= \{1.2.3 + 2.3.4 + \dots + k(k+1)(k+2)\} + (k+1)(k+2) + (k+3)$$

$$= \frac{k(k+1)(k+2)(k+3)}{4} + (k+1)(k+2)(k+3) \qquad [Using(i)]$$

$$= (k+1)(k+2)(k+3)\left(\frac{k}{4}+1\right)$$

$$= \frac{(k+1)(k+2)(k+3)(k+4)}{4}$$

$$= \frac{(k+1)(k+1+1)(k+1+2)(k+1+3)}{4}$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 5:

Prove the following by using the principle of mathematical induction for all $n \in N$:

$$1.3 + 2.3^{2} + 3.3^{3} + \dots + n.3^{n} = \frac{(2n-1)3^{n+1} + 3}{4}$$

Solution 5:

Let the given statement be P(n), i.e.,

Chapter 4 Principle of Mathematical Induction

$$P(n):1.3+2.3^{2}+3.3^{3}+\ldots+n3^{n}=\frac{(2n-1)3^{n+1}+3}{4}$$

For n = 1, we have

$$P(1):1.3=3=\frac{(2.1-1)3^{1+1}+3}{4}=\frac{3^2+3}{4}=\frac{12}{4}=3$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$1.3 + 2.3^{2} + 3.3^{3} + \dots + k3^{k} = \frac{(2k-1)3^{k+1}+3}{4} \dots (i)$$

We shall now prove that P(k+1) is true.

Consider

$$1.3 + 2.3^{2} + 3.3^{3} + \dots + k.3^{k} + (k+1).3^{k+1}$$

$$= (1.3 + 2.3^{2} + 3.3^{3} + \dots + k.3^{k}) + (k+1).3^{k+1}$$

$$= \frac{(2k-1)3^{k+1} + 3}{4} + (k+1)3^{k-1} \qquad [Using(i)]$$

$$= \frac{(2k-1)3^{k+1} + 3 + 4(k+1)3^{k+1}}{4}$$

$$= \frac{3^{k+1} \{2k-1+4(k+1)\} + 3}{4}$$

$$= \frac{3^{k+1} \{6k+3\} + 3}{4}$$

$$= \frac{3^{k+1} \{6k+3\} + 3}{4}$$

$$= \frac{3^{(k+1)+1} \{2k+1\} + 3}{4}$$

$$= \frac{3^{(k+1)+1} \{2k+1\} + 3}{4}$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 6:

Prove the following by using the principle of mathematical induction for all $n \in N$:

$$1.2 + 2.3 + 3.4 + \dots + n.(n+1) = \left\lfloor \frac{n(n+1)(n+2)}{3} \right\rfloor$$

Solution 6:

Let the given statement be P(n), i.e.,

Chapter 4 Principle of Mathematical Induction

$$P(n): 1.2 + 2.3 + 3.4 + \dots + n.(n+1) = \left[\frac{n(n+1)(n+2)}{3}\right]$$

For n = 1, we have

$$P(1):1.2 = 2 = \frac{1(1+1)(1+2)}{3} = \frac{1.2.3}{3} = 2$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$1.2 + 2.3 + 3.4 + \dots + k.(k+1) = \left[\frac{k(k+1)(k+2)}{3}\right] \dots (i)$$

We shall now prove that P(k+1) is true.

Consider

$$1.2+2.3+3.4+....+k.(k+1)+(k+1).(k+2)$$

=[1.2+2.3+3.4+....+k.(k+1)]+(k+1).(k+2)
= $\frac{k(k+1)(k+2)}{3}$ +(k+1)(k+2) [Using(i)]
=(k+1)(k+2)(\frac{k}{3}+1)
= $\frac{(k+1)(k+2)(k+3)}{3}$
= $\frac{(k+1)(k+1+1)(k+1+2)}{3}$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 7:

Prove the following by using the principle of mathematical induction for all $n \in N$:

$$1.3+3.5+5.7+\dots+(2n-1)(2n+1) = \frac{n(4n^2+6n-1)}{3}$$

Solution 7: Let the given statement be P(n), i.e.,

$$P(n):1.3+3.5+5.7+\ldots+(2n-1)(2n+1)=\frac{n(4n^2+6n-1)}{3}$$

For n = 1, we have

$$P(1):1.3=3=\frac{1(4.1^2+6.1-1)}{3}=\frac{4+6-1}{3}=\frac{9}{3}=3$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

Chapter 4 Principle of Mathematical Induction

$$1.3+3.5+5.7+\ldots+(2k-1)(2k+1)=\frac{k(4k^2+6k-1)}{3}\ldots(i)$$

We shall now prove that P(k+1) is true.

Consider

$$(1.3+3.5+5.7+....+(2k-1)(2k+1))+\{(k+1)-1\}\{2(k+1)+1\}$$

$$=\frac{k(4k^{2}+6k-1)}{3}+(2k+2-1)(2k+2+1) \quad [Using(i)]$$

$$=\frac{k(4k^{2}+6k-1)}{3}+(2k+1)(2k+3)$$

$$=\frac{k(4k^{2}+6k-1)+3(4k^{2}+8k+3)}{3}$$

$$=\frac{4k^{3}+6k^{2}-k+12k^{2}+24k+9}{3}$$

$$=\frac{4k^{3}+18k^{2}+23k+9}{3}$$

$$=\frac{4k^{3}+14k^{2}+9k+4k^{2}+14k+9}{3}$$

$$=\frac{k(4k^{2}+14k+9)+1(4k^{2}+14k+9)}{3}$$

$$=\frac{(k+1)\{4k^{2}+8k+4+6k+6-1\}}{3}$$

$$=\frac{(k+1)\{4(k^{2}+2k+1)+6(k+1)-1\}}{3}$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 8:

Prove the following by using the principle of mathematical induction for all $n \in N$: $1.2+2.2^2+3.2^2+...+n.2^n = (n-1)2^{n+1}+2$

Solution 8:

Let the given statement be P(n), i.e., $P(n):1.2+2.2^2+3.2^2+....+n.2^n = (n-1)2^{n+1}+2$ For n = 1, we have $P(1):1.2=2=(1-1)2^{1+1}+2=0+2=2$, which is true. Let P(k) be true for some positive integer k, i.e., $1.2+2.2^2+3.2^2+....+k.2^k = (k-1)2^{k+1}+2....(i)$ We shall now growt that P(k+1) is true.

We shall now prove that P(k+1) is true.

Consider

$$\{1.2 + 2.2^{2} + 3.2^{2} + \dots + k.2^{k}\} + (k+1).2^{k+1}$$

$$= (k-1)2^{k+1} + 2 + (k+1)2^{k+1}$$

$$= 2^{k+1}\{(k-1) + (k+1)\} + 2$$

$$= 2^{k+1}.2k + 2$$

$$= k.2^{(k+1)+1} + 2$$

$$= \{(k+1)-1\}2^{(k+1)+1} + 2$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 9:

Prove the following by using the principle of mathematical induction for all $n \in N$:

 $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} = 1 - \frac{1}{2^n}$

Solution 9:

Let the given statement be P(n), i.e.,

$$P(n): \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} = 1 - \frac{1}{2^n}$$

For n=1, we have

 $P(1):\frac{1}{2}=1-\frac{1}{2^{1}}=\frac{1}{2}$, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{k}} = 1 - \frac{1}{2^{k}} \dots (i)$$

We shall now prove that P(k+1) is true.

$$\begin{pmatrix} \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{k}} \end{pmatrix} + \frac{1}{2^{k+1}}$$

= $\begin{pmatrix} 1 - \frac{1}{2^{k}} \end{pmatrix} + \frac{1}{2^{k+1}}$ [Using(i)]

$$1 - \frac{1}{2^{k}} \left(1 - \frac{1}{2} \right)$$
$$= 1 - \frac{1}{2^{k}} \left(\frac{1}{2} \right)$$
$$= 1 - \frac{1}{2^{k+1}}$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 10:

Prove the following by using the principle of mathematical induction for all $n \in N$:

$$\frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + \dots + \frac{1}{(3n-1)(3n+2)} = \frac{n}{(6n+4)}$$

Solution 10:

Let the given statement be P(n), i.e.,

$$P(n):\frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + \dots + \frac{1}{(3n-1)(3n+2)} = \frac{n}{(6n+4)}$$

For n = 1, we have

 $P(1) = \frac{1}{2.5} = \frac{1}{10} = \frac{1}{6.1+4} = \frac{1}{10}, \text{ which is true.}$ Let P(k) be true for some positive integer k, i.e., $\frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + \dots + \frac{1}{(3k+1)(3k+2)} = \frac{k}{6k+4} \dots (i)$

We shall now prove that P(k+1) is true.

$$\frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + \dots + \frac{1}{(3k+1)(3k+2)} + \frac{1}{\{3(k+1)-1\}\{3(k+1)+2\}}$$

$$= \frac{k}{6k+4} + \frac{1}{(3k+3-1)(3k+3+2)} \qquad [Using(i)]$$

$$= \frac{k}{6k+4} + \frac{1}{(3k+2)(3k+5)}$$

$$= \frac{k}{2(3k+2)} + \frac{1}{(3k+2)(3k+5)}$$

$$= \frac{1}{(3k+2)} \left(\frac{k}{2} + \frac{1}{3k+5}\right)$$

$$= \frac{1}{(3k+2)} \left(\frac{k(3k+5)+2}{2(3k+5)}\right)$$

Chapter 4 Principle of Mathematical Induction

$$= \frac{1}{(3k+2)} \left(\frac{3k^2 + 5k + 2}{2(3k+5)} \right)$$
$$= \frac{1}{(3k+2)} \left(\frac{(3k+2)(k+1)}{2(3k+5)} \right)$$
$$= \frac{(k+1)}{6k+10}$$
$$= \frac{(k+1)}{6(k+1)+4}$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e, N.

Question 11:

Prove the following by using the principle of mathematical induction for all $n \in N$:

$$\frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \dots + \frac{1}{n(n+1)(n+2)} = \frac{n(n+3)}{4(n+1)(n+2)}$$

Solution 11:

Let the given statement be P(n), i.e.,

$$P(n):\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+\dots+\frac{1}{n(n+1)(n+2)}=\frac{n(n+3)}{4(n+1)(n+2)}$$

For n = 1, we have

$$P(1): \frac{1}{1\cdot 2\cdot 3} = \frac{1\cdot (1+3)}{4(1+1)(1+2)} = \frac{1\cdot 4}{4\cdot 2\cdot 3} = \frac{1}{1\cdot 2\cdot 3}, \text{ which is true.}$$

Let P(k) be true for some positive integer k, i.e.,

$$\frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \dots + \frac{1}{k(k+1)(k+2)} = \frac{k(k+3)}{4(k+1)(k+2)} \quad \dots \quad (i)$$

We shall now prove that P(k+1) is true.

$$\begin{bmatrix} \frac{1}{1\cdot 2\cdot 3} + \frac{1}{2\cdot 3\cdot 4} + \frac{1}{3\cdot 4\cdot 5} + \dots + \frac{1}{k(k+1)(k+2)} \end{bmatrix} + \frac{1}{(k+1)(k+2)(k+3)}$$
$$= \frac{k(k+3)}{4(k+1)(k+2)} + \frac{1}{(k+1)(k+2)(k+3)}$$
[Using (i)]
$$= \frac{1}{(k+1)(k+2)} \left\{ \frac{k(k+3)}{4} + \frac{1}{k+3} \right\}$$

Chapter 4 Principle of Mathematical Induction

$$= \frac{1}{(k+1)(k+2)} \left\{ \frac{k(k+3)^2 + 4}{4(k+3)} \right\}$$

$$= \frac{1}{(k+1)(k+2)} \left\{ \frac{k(k^2 + 6k + 9) + 4}{4(k+3)} \right\}$$

$$= \frac{1}{(k+1)(k+2)} \left\{ \frac{k^3 + 6k^2 + 9k + 4}{4(k+3)} \right\}$$

$$= \frac{1}{(k+1)(k+2)} \left\{ \frac{k^3 + 2k^2 + k + 4k^2 + 8k + 4}{4(k+3)} \right\}$$

$$= \frac{1}{(k+1)(k+2)} \left\{ \frac{k(k^2 + 2k + 1) + 4(k^2 + 2k + 1)}{4(k+3)} \right\}$$

$$= \frac{1}{(k+1)(k+2)} \left\{ \frac{k(k+1)^2 + 4(k+1)^2}{4(k+3)} \right\}$$

$$= \frac{(k+1)^2(k+4)}{4(k+1)(k+2)(k+3)}$$

$$= \frac{(k+1)\{(k+1)+3\}}{4\{(k+1)+1\}\{(k+1)+2\}}$$

Thus, $P(k+1)$ is true whenever P(k) is true.

Question 12:

numbers i.e., N.

Prove the following by using the principle of mathematical induction for all $n \in N$:

Hence, by the principle of mathematical induction, statement P(n) is true for all natural

$$a + ar + ar^{2} + \dots + ar^{n-1} = \frac{a(r^{n} - 1)}{r - 1}$$

Solution 12:

Let the given statement be P(n), i.e.,

$$P(n): a + ar + ar^{2} + \dots + ar^{n-1} = \frac{a(r^{n}-1)}{r-1}$$

For n = 1, we have

$$P(1):a = \frac{a(r^1 - 1)}{(r - 1)} = a$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$a + ar + ar^{2} + \dots + ar^{k-1} = \frac{a(r^{k} - 1)}{r - 1} \dots (i)$$

We shall now prove that P(k+1) is true.

Consider

$$\{a + ar + ar^{2} + \dots + ar^{k-1}\} + ar^{(k+1)-1}$$

$$= \frac{a(r^{k} - 1)}{r - 1} + ar^{k} \qquad [Using(i)]$$

$$= \frac{a(r^{k} - 1) + ar^{k} (r - 1)}{r - 1}$$

$$= \frac{a(r^{k} - 1) + ar^{k-1} - ar^{k}}{r - 1}$$

$$= \frac{ar^{k} - a + ar^{k+1} - ar^{k}}{r - 1}$$

$$= \frac{ar^{k+1} - a}{r - 1}$$

$$= \frac{a(r^{k+1} - 1)}{r - 1}$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 13:

Prove the following by using the principle of mathematical induction for all $n \in N$:

$$\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right)\dots\left(1+\frac{(2n+1)}{n^2}\right) = (n+1)^2$$

Solution 13:

Let the given statement be P(n), i.e.,

$$P(n):\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right)\dots\left(1+\frac{(2n+1)}{n^2}\right)=(n+1)^2$$

For n = 1, we have

$$P(1): (1+\frac{3}{1}) = 4 = (1+1)^2 = 2^2 = 4$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right)\dots\left(1+\frac{(2k+1)}{k^2}\right)=(k+1)^2\dots(1)$$

We shall now prove that P(k+1) is true.

$$\begin{bmatrix} \left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right)...\left(1+\frac{(2k+1)}{k^2}\right)\end{bmatrix} \left\{1+\frac{\{2(k+1)+1\}}{(k+1)^2}\right\}$$

= $\left(k+1\right)^2 \left(1+\frac{2(k+1)+1}{(k+1)^2}\right)$ [Using(1)]

Chapter 4 Principle of Mathematical Induction

$$= (k+1)^{2} \left[\frac{(k+1)^{2} + 2(k+1) + 1}{(k+1)^{2}} \right]$$
$$= (k+1)^{2} + 2(k+1) + 1$$
$$= \{(k+1) + 1\}^{2}$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 14:

Prove the following by using principle of mathematical induction for all $n \in N$:

$$\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\dots\left(1+\frac{1}{n}\right) = (n+1)$$

Let the given statement be P(n), i.e.,

$$P(n):\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\dots\left(1+\frac{1}{n}\right) = (n+1)$$

For n = 1, we have

$$P(1):(1+\frac{1}{1})=2=(1+1)$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$P(k):\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\dots\left(1+\frac{1}{k}\right)=(k+1)\dots(1)$$

We shall now prove that P(k+1) is true.

Consider

$$\begin{bmatrix} \left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\dots\left(1+\frac{1}{k}\right)\end{bmatrix}\left(1+\frac{1}{k+1}\right) \\ = \left(k+1\right)\left(1+\frac{1}{k+1}\right) \\ = \left(k+1\right)\left[\frac{(k+1)+1}{(k+1)}\right] \\ = (k+1)+1 \end{bmatrix}$$
[Using (1)]

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 15:

Prove the following by using the principle of mathematical induction for all $n \in N$:

$$1^{2} + 3^{2} + 5^{2} + \dots + (2n-1)^{2} = \frac{n(2n-1)(2n+1)}{3}$$

 $\left[\text{Using}(1) \right]$

Solution 15:

Let the given statement be P(n), i.e., $P(n): 1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{n(2n-1)(2n+1)}{3}$

For n = 1, we have

$$P(1) = 1^2 = 1 = \frac{1(2.1-1)(2.1+1)}{3} = \frac{1.1.3}{3} = 1$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$P(k) = 1^{2} + 3^{2} + 5^{2} + \dots + (2k-1)^{2} = \frac{k(2k-1)(2k+1)}{3} \dots \dots (1)^{2k}$$

We shall now prove that P(k+1) is true.

Consider

$$\begin{cases} 1^{2} + 3^{2} + 5^{2} + \dots + (2k-1)^{2} \\ + \left\{ 2(k+1) - 1 \right\}^{2} \\ = \frac{k(2k-1)(2k+1)}{3} + (2k+2-1)^{2} \\ = \frac{k(2k-1)(2k+1)}{3} + (2k+1)^{2} \\ = \frac{2(2k-1)(2k+1) + 3(2k+1)^{2}}{3} \\ = \frac{(2k+1)\left\{k(2k-1) + 3(2k+1)\right\}}{3} \\ = \frac{(2k+1)\left\{2k^{2} - k + 6k + 3\right\}}{3} \\ = \frac{(2k+1)\left\{2k^{2} + 2k + 3k + 3\right\}}{3} \\ = \frac{(2k+1)\left\{2k^{2} + 2k + 3k + 3\right\}}{3} \\ = \frac{(2k+1)\left\{2k(k+1) + 3(k+1)\right\}}{3} \\ = \frac{(2k+1)\left\{2k(k+1) + 3(k+1)\right\}}{3} \\ = \frac{(2k+1)\left\{2(k+1) - 1\right\}\left\{2(k+1) + 1\right\}}{3} \\ = \frac{(k+1)\left\{2(k+1) - 1\right\}\left\{2(k+1) + 1\right\}}{3} \end{cases}$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 16:

Chapter 4 Principle of Mathematical Induction

Prove the following by using the principle of mathematical induction for all $n \in N$:

$$\frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \dots + \frac{1}{(3n-2)(3n+1)} = \frac{n}{(3n+1)}$$

Solution 16:

Let the given statement be P(n), i.e.,

$$P(n):\frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \dots + \frac{1}{(3n-2)(3n+1)} = \frac{n}{(3n+1)}$$

For n = 1, we have

 $P(1) = \frac{1}{1.4} = \frac{1}{3.1+1} = \frac{1}{4} + \frac{1}{1.4}$, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$P(k) = \frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \dots + \frac{1}{(3k-2)(3k+1)} = \frac{k}{3k+1} \dots \dots (1)$$

We shall now prove that P(k+1) is true.

Consider

$$\begin{cases} \frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \dots + \frac{1}{(3k-2)(3k+1)} \end{cases} + \frac{1}{\{3(k+1)-2\}\{3(k+1)+1\}} \\ = \frac{k}{3k+1} + \frac{1}{(3k+1)(3k+4)} \qquad [Using (1)] \\ = \frac{1}{(3k+1)} \left\{ k + \frac{1}{(3k+4)} \right\} \\ = \frac{1}{(3k+1)} \left\{ \frac{k(3k+4)+1}{(3k+4)} \right\} \\ = \frac{1}{(3k+1)} \left\{ \frac{3k^2 + 4k + 1}{(3k+4)} \right\} \\ = \frac{1}{(3k+1)} \left\{ \frac{3k^2 + 3k + k + 1}{(3k+4)} \right\} \\ = \frac{(3k+1)(k+1)}{(3k+4)} \\ = \frac{(k+1)}{(3k+1)(3k+4)} \\ = \frac{(k+1)}{3(k+1)+1} \end{cases}$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 17:

Prove the following by using the principle of mathematical induction for all $n \in N$:

Chapter 4 Principle of Mathematical Induction

$$\frac{1}{3.5} + \frac{1}{5.7} + \frac{1}{7.9} + \dots + \frac{1}{(2n+1)(2n+3)} = \frac{n}{3(2n+3)}$$

Solution 17:

Let the given statement be P(n), i.e.,

$$P(n):\frac{1}{3.5} + \frac{1}{5.7} + \frac{1}{7.9} + \dots + \frac{1}{(2n+1)(2n+3)} = \frac{n}{3(2n+3)}$$

For n = 1, we have

 $P(1): \frac{1}{3.5} = \frac{1}{3(2.1+3)} = \frac{1}{3.5}$, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$P(k):\frac{1}{3.5} + \frac{1}{5.7} + \frac{1}{7.9} + \dots + \frac{1}{(2k+1)(2k+3)} = \frac{k}{3(2k+3)} \dots (1)$$

We shall now prove that P(k+1) is true. Consider

$$\left[\frac{1}{3.5} + \frac{1}{5.7} + \frac{1}{7.9} + \dots + \frac{1}{(2k+1)(2k+3)}\right] + \frac{1}{\{2(k+1)+1\}\{2(k+1)+3\}}$$

$$= \frac{k}{3(2k+3)} + \frac{1}{(2k+3)(2k+5)} \qquad \text{[Using (1)]}$$

$$= \frac{1}{(2k+3)} \left[\frac{k}{3} + \frac{1}{(2k+5)}\right]$$

$$= \frac{1}{(2k+3)} \left[\frac{k(2k+5)+3}{3(2k+5)}\right]$$

$$= \frac{1}{(2k+3)} \left[\frac{2k^2+5k+3}{3(2k+5)}\right]$$

$$= \frac{1}{(2k+3)} \left[\frac{2k(k+1)+3(k+1)}{3(2k+5)}\right]$$

$$= \frac{(k+1)(2k+3)}{3(2k+5)}$$

$$= \frac{(k+1)}{3\{2(k+1)+3\}}$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 18:

Chapter 4 Principle of Mathematical Induction

[Using (1)]

Prove the following by using the principle of mathematical induction for all $n \in N$:

$$1+2+3+\ldots+n < \frac{1}{8}(2n+1)^2$$

Solution 18:

Let the given statement be P(n), i.e.,

$$P(n): 1+2+3+\dots+n < \frac{1}{8}(2n+1)^2$$

It can be noted that P(n) is true for n = 1 since

$$1 < \frac{1}{8} (2.1+1)^2 = \frac{9}{8}$$

Let P(k) be true for some positive integer k, i.e.,

$$1+2+\ldots+k < \frac{1}{8}(2k+1)^2\ldots(1)$$

We shall now prove that P(k+1) is true whenever P(k) is true.

Consider

$$(1+2+....+k)+(k+1) < \frac{1}{8}(2k+1)^{2}+(k+1)$$

$$<\frac{1}{8}\{(2k+1)^{2}+8(k+1)\}$$

$$<\frac{1}{8}\{4k^{2}+4k+1+8k+8\}$$

$$<\frac{1}{8}\{4k^{2}+12k+9\}$$

$$<\frac{1}{8}\{2k+3)^{2}$$

$$<\frac{1}{8}\{2(k+1)+1\}^{2}$$
Hence, $(1+2+3+....+k)+(k+1) < \frac{1}{8}(2k+1)^{2}+(k+1)$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 19:

Prove the following by using the principle of mathematical induction for all $n \in N$: n(n+1)(n+5) is a multiple of 3.

Solution 19:

Let the given statement be P(n), i.e.,

P(n): n(n+1)(n+5), which is a multiple of 3.

It can be noted that P(n) is true for n=1 since 1(1+1)(1+5)=12, which is a multiple of 3.

Let P(k) be true for some positive integer k, i.e., k(k+1)(k+5) is a multiple of 3. $\therefore k(k+1)(k+5) = 3m$, where $m \in \mathbb{N}$ (1) We shall now prove that P(k+1) is true whenever P(k) is true. Consider $(k+1)\{(k+1)+1\}\{(k+1)+5\}$ $=(k+1)(k+2)\{(k+5)+1\}$ =(k+1)(k+2)(k+5)+(k+1)(k+2) $=\{k(k+1)(k+5)+2(k+1)(k+5)\}+(k+1)(k+2)$ $=3m+(k+1)\{2(k+5)+(k+2)\}$ $=3m+(k+1)\{2(k+5)+(k+2)\}$ $=3m+(k+1)\{2k+10+k+2\}$ $=3m+(k+1)\{2k+10+k+2\}$ $=3m+(k+1)\{3k+12\}$ $=3m+(k+1)\{k+4\}$ $=3\{m+(k+1)(k+4)\}=3\times q$, where $q=\{m+(k+1)(k+4)\}$ is some natural number. Therefore, $(k+1)\{(k+1)+1\}\{(k+1)+5\}$ is a multiple of 3.

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 20:

Prove the following by using the principle of mathematical induction for all $n \in N$: $10^{2n-1} + 1$ is divisible by 11.

Solution 20:

Let the given statement be P(n), i.e., $P(n):10^{2n-1}+1$ is divisible by 11.

It can be observed that P(n) is true for n = 1

Since $P(1) = 10^{2.1-1} + 1 = 11$, which is divisible by 11.

Let P(k) be true for some positive integer k,

i.e., $10^{2k-1} + 1$ is divisible by 11.

 $\therefore 10^{2k-1} + 1 = 11m$, where

 $m \in \mathbf{N} \dots (1)$

We shall now prove that P(k+1) is true whenever P(k) is true.

Consider $10^{2(k+1)-1} + 1$ = $10^{2k+2-1} + 1$

$$= 10^{2k+1} + 1$$

= 10² (10^{2k-1} + 1 - 1) + 1
= 10² (10^{2k-1} + 1) - 10² + 1
= 10² . 11m - 100 + 1 [Using (1)]
= 100 × 11m - 99
= 11(100m - 9)
= 11r, where $r = (100m - 9)$ is some natural number

Therefore, $10^{2(k+1)-1} + 1$ is divisible by 11.

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 21:

Prove the following by using the principle of mathematical induction for all $n \in N$: $x^{2n} - y^{2n}$ is divisible by x + y.

Solution 21:

Let the given statement be P(n), i.e.,

 $P(n): x^{2n} - y^{2n}$ is divisible by x + y.

It can be observed that P(n) is true for n = 1.

This is so because $x^{2\times 1} - y^{2\times 1} = x^2 - y^2 = (x+y)(x-y)$ is divisible by (x+y).

Let P(k) be true for some positive integer k, i.e.,

 $x^{2k} - y^{2k}$ is divisible by x + y.

:. Let $x^{2k} - y^{2k} = m(x+y)$, where $m \in \mathbb{N}$ (1)

We shall now prove that P(k+1) is true whenever P(k) is true.

Consider

$$x^{2(k+1)-y^{2(k+1)}}$$

$$= x^{2k} \cdot x^{2} - y^{2k} \cdot y^{2}$$

$$= x^{2} \left(x^{2k} - y^{2k} + y^{2k} \right) - y^{2k} \cdot y^{2}$$

$$= x^{2} \left\{ m(x+y) + y^{2k} \right\} - y^{2k} \cdot y^{2}$$

$$= m(x+y)x^{2} + y^{2k} \cdot x^{2} - y^{2k} \cdot y^{2}$$

$$= m(x+y)x^{2} + y^{2k} \left(x^{2} - y^{2} \right)$$

$$= m(x+y)x^{2} + y^{2k} \left(x+y \right) (x-y)$$

$$= (x+y) \left\{ mx^{2} + y^{2k} \left(x-y \right) \right\}, \text{ which is a factor of } (x+y).$$
Thus, $P(k+1)$ is true whenever P(k) is true.

[Using (1)]

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 22:

Prove the following by using the principle of mathematical induction for all $n \in N: 3^{2n+2} - 8n - 9$ is divisible by 8.

Solution 22:

Let the given statement be P(n), i.e., $P(n):3^{2n+2}-8n-9$ is divisible by 8. It can be observed that P(n) is true for n = 1 Since $3^{2\times 1+2}-8\times 1-9=64$, which is divisible by 8. Let P(k) be true for some positive integer k, i.e., $3^{2k+2}-8k-9$ is divisible by 8. $\therefore 3^{2k+2}-8k-9=8m$; where $m \in N$(1)

We shall now prove that P(k+1) is true whenever P(k) is true.

Consider $3^{2(k+1)+2} - 8(k+1) - 9$ $3^{2k+2} \cdot 3^2 - 8k - 8 - 9$ $= 3^2 (3^{2k+2} - 8k - 9 + 8k + 9) - 8k - 17$ $= 3^2 (3^{2k+2} - 8k - 9) + 3^2 (8k + 9) - 8k - 17$ = 9.8m + 9(8k + 9) - 8k - 17 = 9.8m + 72k + 81 - 8k - 17 = 9.8m + 64k + 64 = 8(9m + 8k + 8) = 8r, where r = (9m + 8k + 8) is a natural number Therefore, $3^{2(k+1)+2} - 8(k+1) - 9$ is divisible by 8. Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all numbers i.e., N.

Question 23:

Prove the following by using the principle of mathematical induction for all $n \in N$: $41^n - 14^n$ is a multiple of 27.

Solution 23:

Let the given statement be P(n), i.e.,

 $P(n):41^{n}-14^{n}$ is a multiple of 27.

It can be observed that P(n) is true for n = 1

Since $41^{1} - 14^{1} = 27$, which is a multiple of 27. Let P(k) be true for some positive integer k, i.e., $41^{k} - 14^{k}$ is a multiple of 27 $\therefore 41^{k} - 14^{k} = 27 m, m \in \mathbb{N}$(1)

We shall now prove that P(k+1) is true whenever P(k) is true.

Consider $41^{k+1} - 14^{k+1}$ $= 41^{k} \cdot 41 - 14^{k} \cdot 14$ $= 41(41^{k} - 14^{k} + 14^{k}) - 14^{k} \cdot 14$ $= 41.27 m + 14^{k} (41 - 14)$ $= 41.27 m + 27.14^{k}$ $= 27(41m - 14^{k})$ $= 27 \times r$, where $r = (41m - 14^{k})$ is a natural number. Therefore, $41^{k+1} - 14^{k+1}$ is a multiple of 27.

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 24:

Prove the following by using the principle of mathematical induction for all $n \in N$: $(2n+7) < (n+3)^2$

Solution 24:

Let the given statement be P(n), i.e.,

$$P(n):(2n+7)<(n+3)^2$$

It can be observed that P(n) is true for n = 1

Since $2.1+7=9 < (1+3)^2 = 16$, which is true.

Let P(k) be true for some positive integer k, i.e.,

 $(2k+7) < (k+3)^2 \dots (1)$

We shall now prove that P(k+1) is true whenever P(k) is true.

Consider

$$\{2(k+1)+7\} = (2k+7)+2$$

 $\therefore \{2(k+1)+7\} = (2k+7)+2 < (k+3)^2+2$ [Using (1)]
 $2(k+1)+7 < k^2+6k+9+2$
 $2(k+1)+7 < k^2+6k+11$

Now,
$$k^2 + 6k + 11 < k^2 + 8k + 16$$

 $\therefore 2(k+1) + 7 < (k+4)^2$
 $2(k+1) + 7 < {(k+1)+3}^2$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.