Exercise 2.1

Question 1:
If
$$\left(\frac{x}{3}+1, y-\frac{2}{3}\right) = \left(\frac{5}{3}, \frac{1}{3}\right)$$
, find the values of x and y.

Solution 1:

It is given that $\left(\frac{x}{3}+1, y-\frac{2}{3}\right) = \left(\frac{5}{3}, \frac{1}{3}\right)$

Since the ordered pairs are equal, the corresponding elements will also be equal.

Therefore, $\frac{x}{3} + 1 = \frac{5}{3}$ and $y - \frac{2}{3} = \frac{1}{3}$ $\frac{x}{3} + 1 = \frac{5}{3}$ $\Rightarrow \frac{x}{3} = \frac{5}{3} - 1$ $y - \frac{2}{3} = \frac{1}{3}$ $\Rightarrow \frac{x}{3} = \frac{2}{3} \Rightarrow y = \frac{1}{3} + \frac{2}{3}$ $\Rightarrow x = 2 \Rightarrow y = 1$ $\therefore x = 2$ and y = 1

Question 2:

If the set A has 3 elements and the set $B = \{3, 4, 5\}$, then find the number of elements in $(A \times B)$?

Solution 2:

It is given that set A has 3 elements and the elements of set B are 3, 4, and 5. \Rightarrow Number of elements in set B = 3

Number of elements in $(A \times B)$

= (Number of elements in A) \times (Number of elements in B)

 $=3 \times 3 = 9$

Thus, the number of elements in $(A \times B)$ in 9.

Question 3:

If G = $\{7, 8\}$ and H = $\{5, 4, 2\}$, find $G \times H$ and $H \times G$.

Solution 3:

 $G = \{7, 8\}$ and $H = \{5, 4, 2\}$

We know that the Cartesian product $P \times Q$ of two non-empty sets P and Q is defined as $P \times Q - \{(p,q): p \in P, q \in Q\}$ $\therefore G \times H = \{(7,5), (7,4), (7,2), (8,5), (8,4), (8,2)\}$ $H \times G = \{(5,7), (5,8), (4,7), (4,8), (2,7), (2,8)\}$

Question 4:

State whether each of the following statement are true or false. If the statement is false, rewrite the given statement correctly.

(i) If P = {m, n} and Q = {n, m}, then $P \times Q = \{(m, n), (n, m)\}$.

(ii) If A and B are non-empty sets, then $A \times B$ is a non-empty set of ordered pairs (x, y) such that $x \in A$ and $y \in B$.

(iii) If $A = \{1, 2\}, B = \{3, 4\}$, then $A \times \{B \cap \emptyset\} = \emptyset$.

Solution 4:

(i) False If $P = \{m, n\}$ and $Q = \{n, m\}$, then $P \times Q = \{(m, m), (m, n), (n, m), (n, n)\}$ (ii) True (iii) True

Question 5:

If $A = \{-1, 1\}$, find $A \times A \times A$.

Solution 5:

If is known that for any non-empty set $A, A \times A \times A$ is defined as $A \times A \times A = \{(a,b,c) : a,b,c \in A\}$

It is given that $A = \{-1, 1\}$

$$\therefore A \times A \times A = \begin{cases} (-1, -1, -1), (-1, -1, 1), (-1, 1, -1), (-1, 1, 1), \\ (1, -1, -1), (1, -1, 1), (1, 1, -1), (1, 1, 1) \end{cases}$$

Question 6:

If $A \times B = \{(a, x), (a, y), (b, x), (b, y)\}$. Find A and B.

Solution 6:

If is given that $A \times B = \{(a, x), (a, y), (b, x), (b, y)\}$

We know that the Cartesian product of two non-empty sets P and Q is defined as $P \times Q = \{(p,q): p \in P, q \in Q\}$

 \therefore A is the set of all first elements and B is the set of all second elements. Thus, $A = \{a, b\}$ and $B = \{x, y\}$

Question 7:

Let $A = \{1, 2\}, B = \{1, 2, 3, 4\}, C = \{5, 6\}$ and $D = \{5, 6, 7, 8\}$. Verify that

(i) $A \times (B \cap C) = (A \times B) \cap (A \times C)$ (ii) $A \times C$ is a subset of $B \times D$ **Solution 7:** (i) To verify: $A \times (B \cap C) = (A \times B) \cap (A \times C)$ We have $B \cap C = \{1, 2, 3, 4\} \cap \{5, 6\} = \emptyset$ $\therefore L.H.S. = A \times (B \cap C) = A \times \emptyset = \emptyset$ $A \times B = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4)\}$ $A \times C = \{(1, 5), (1, 6), (2, 5), (2, 6)\}$ $\therefore R.H.S. = (A \times B) \cap (A \times C) = \emptyset$ $\therefore L.H.S. = R.H.S.$ Hence, $A \times (B \cap C) = (A \times B) \cap (A \times C)$ (ii) To verify: $A \times C$ is a subset of $B \times D$ $A \times C = \{(1, 5), (1, 6), (2, 5), (2, 6)\}$ $A \times D = \{(1, 5), (1, 6), (1, 7), (1, 8), (2, 5), (2, 6), (2, 7), (2, 8), (3, 5), (3, 6), (3, 7), (3, 8), (4, 5), (4, 6), (4, 7), (4, 8)\}$

We can observe that all the elements of set $A \times C$ are the elements of set $B \times D$. Therefore, $A \times C$ is a subset of $B \times D$.

Question 8:

Let $A = \{1, 2\}$ and $B = \{3, 4\}$. Write $A \times B$. How many subsets will $A \times B$ have? List them.

Solution 8:

 $A = \{1, 2\} \text{ and } B = \{3, 4\}$ ∴ $A \times B = \{(1, 3), (1, 4), (2, 3), (2, 4)\}$ ⇒ $n(A \times B) = 4$

We know that if C is a set with n(C) = m, then $n[P(C)] = 2^m$.

Therefore, the set $A \times B$ has $2^4 = 16$ subsets. These are $\emptyset, \{(1,3)\}, \{(1,4)\}, \{(2,3)\}, \{(2,4)\}, \{(1,3)(1,4)\}, \{(1,3), (2,3)\}, \{(1,3), (2,4)\}, \{(1,4), (2,3)\}, \{(1,4)(2,4)\}, \{(2,3)(2,4)\}$ $\{(1,3), (1,4), (2,3)\}, \{(1,3), (1,4), (2,4)\}, \{(1,3), (2,3), (2,4)\}$ $\{(1,4), (2,3), (2,4)\}, \{(1,3), (1,4), (2,3), (2,4)\}$

Question 9:

Let A and B be two sets such that n(A) = 3 and n(B) = 2. If (x,1), (y,2), (z,1) are in $A \times B$, find A and B, where x, y and z are distinct elements.

Solution 9:

It is given that n(A) = 3 and n(B) = 2; and (x,1), (y,2), (z,1) are in $A \times B$. We know that $A = Set of first elements of the ordered pair elements of <math>A \times B$ $B = Set of second elements of the ordered pair elements of <math>A \times B$. $\therefore x, y$, and z are the elements of A; and 1 and 2 are the elements of B. Since n(A) = 3 and n(B) = 2, It is clear that $A = \{x, y, z\}$ and $B = \{1, 2\}$.

Question 10:

The Cartesian product $A \times A$ has 9 elements among which are found (-1,0) and (0, 1). Find the set A and the remaining elements of $A \times A$.

Solution 10:

We know that if n(A) = p and n(B) = q, then $n(A \times B) = pq$.

$$\therefore n(A \times A) = n(A) \times n(A)$$

It is given that $n(A \times A) = 9$

$$\therefore n(A) \times n(A) =$$

$$\Rightarrow n(A) = 3$$

The ordered pairs (-1,0) and (0, 1) are two of the nine elements of $A \times A$.

We know that $A \times A = \{(a, a) : a \in A\}$. Therefore, -1,0, and 1 are elements of A.

Since n(A) = 3, it is clear that $A = \{-1, 0, 1\}$.

The remaining elements of set $A \times A$ are (-1,-1), (-1,1), (0,-1), (0,0), (1,-1), (1,0), and (1,1).

Exercise 2.2

Question 1:

Let $A = \{1, 2, 3...14\}$. Define a relation R from A to A by $R = \{(x, y): 3x - y = 0\}$, where $x, y \in A$. Write down its domain, codomain and range.

Solution 1:

The relation R from A to A is given as $R = \{(x, y): 3x - y = 0, \text{ where } x, y \in A\}$

i.e., $R = \{(x, y) : 3x = y, \text{ where } x, y \in A\}$

 $\therefore R = \{ (1,3), (2,6), (3,9), (4,12) \}$

The domain of R is the set of all first elements of the ordered pairs in the relation. \therefore Domain of $R = \{1, 2, 3, 4\}$

The whole set A is he codomain of the relation R.

:. Codomain of $R = A = \{1, 2, 3, ..., 14\}$

The range of R is the set of all second elements of the ordered pairs in the relation.

: Range of $R = \{3, 6, 9, 12\}$

Question 2:

Define a relation R on the set N of natural numbers by $R = \{(x, y) : y = x+5, x \text{ is a natural number less than } 4; x, y \in \mathbb{N}\}$. Depict this relationship using roster form. Write down the domain and the range.

Solution 2:

 $R = \{(x, y): y = x + 5, x \text{ is a n} \text{ atural number less than } 4, x, y \in \mathbb{N}\}$

The natural numbers less than 4 are 1, 2, and 3.

$$\therefore R = \{(1,6), (2,7), (3,8)\}$$

The domain of R is the set of all first elements of the ordered pairs in the relation.

:. Domain of $R = \{1, 2, 3\}$

The range of R is the set of all second elements of the ordered pairs in the relation.

:. Range of $R = \{6, 7, 8\}$

Question 3:

 $A = \{1, 2, 3, 5\}$ and $B = \{4, 6, 9\}$. Define a relation R from A to B by $R = \{(x, y): \text{ the difference between } x \text{ and } y \text{ is odd}; x \in A, y \in B\}$. Write R in roster form.

Solution 3:

 $A = \{1, 2, 3, 5\} \text{ and } B = \{4, 6, 9\}$ $R = \{(x, y): \text{the difference between } x \text{ and } y \text{ is odd}; x \in A, y \in B\}$ $\therefore R = \{(1, 4), (1, 6), (2, 9), (3, 4), (3, 6), (5, 4), (5, 6)\}$

Question 4:

The given figure shows a relationship between the sets P and Q. Write this relation (i) in set-builder form

(ii) in roster form.

What is its domain and range?

Solution 4:

According to the given figure, $P = \{5, 6, 7\}, Q = \{3, 4, 5\}$ (i) $R = \{(x, y) : y = x - 2; x \in P\}$ or $R = \{(x, y) : y = x - 2$ for $x = 5, 6, 7\}$ (ii) $R = \{(5, 3), (6, 4), (7, 5)\}$ Domain of $R = \{5, 6, 7\}$ Range of $R = \{3, 4, 5\}$

Question 5:

Let $A = \{1, 2, 3, 4, 6\}$. Let R be the relation on A defined by $\{(a,b): a, b \in A, b \text{ is exactly divisible by a}\}$. (i) Write R in roster form (ii) Find the domain of R (iii) Find the range of R.

Solution 5:

 $A = \{1, 2, 3, 4, 6\}, R = \{(a, b): a, b \in A, b \text{ is exactly divisible by } a\}$ (i) $R = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 6), (2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4), (6, 6)\}$ (ii) Domain of $R = \{1, 2, 3, 4, 6\}$ (iii) Range of $R = \{1, 2, 3, 4, 6\}$

Question 6:

Determine the domain and range of the relation R defined by $R = \{(x, x+5) : x \in \{0, 1, 2, 3, 4, 5\}\}.$

Solution 6:

 $R = \{(x, x+5) : x \in \{0, 1, 2, 3, 4, 5\}\}$

 $\therefore R = \{(0,5), (1,6), (2,7), (3,8), (4,9), (5,10)\}$

:. Domain of $R = \{0, 1, 2, 3, 4, 5\}$ Range of $R = \{5, 6, 7, 8, 9, 10\}$

Question 7:

Write the relation $R = \{(x, x^3) : x \text{ is a prime number less than } 10\}$ in roster form.

Solution 7:

 $R = \{(x, x^3) : x \text{ is a prime number less than 10} \}.$ The prime numbers less than 10 are 2, 3, 5 and 7. $\therefore R = \{(2, 8), (3, 27), (5, 125), (7, 343)\}$

Question 8:

Let $A = \{x, y, z\}$ and $B = \{1, 2\}$. Find the number of relations from A to B.

Solution 8:

It is given that $A = \{x, y, z\}$ and $B = \{1, 2\}$. $\therefore A \times B = \{(x, 1), (x, 2), (y, 1), (y, 2), (z, 1), (z, 2)\}$ Since $n(A \times B) = 6$, the number of subsets of $A \times B$ is 2^6 . Therefore, the number of relations from A to B is 2^6 .

Question 9:

Let R be the relation on Z defined by $R = \{(a,b): a, b \in \mathbb{Z}, a-b \text{ is an integer}\}$. Find the domain and range of R.

Solution 9:

 $R = \{(a,b): a, b \in \mathbb{Z}, a-b \text{ is an integer}\}$

It is known that the difference between any two integers is always an integer.

 $\therefore \text{ Domain of } \mathbf{R} = \mathbf{Z}$ Range of $\mathbf{R} = \mathbf{Z}$

Exercise 2.3

Question 1:

Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.

(i) $\{(2,1), (5,1), (8,1), (11,1), (14,1), (17,1)\}$ (ii) $\{(2,1), (4,2), (6,3), (8,4), (10,5), (12,6), (14,7)\}$ (iii) $\{(1,3), (1,5), (2,5)\}$

Solution 1:

 $\{(2,1),(5,1),(8,1),(11,1),(14,1),(17,1)\}$

Since 2, 5, 8, 11, 14 and 17 are the elements of the domain of the given relation having their unique images, this relation is a function. Here, domain = $\{2, 5, 8, 11, 14, 17\}$ and range = $\{1\}$

(ii) $\{(2,1), (4,2), (6,3), (8,4), (10,5), (12,6), (14,7)\}$

Since 2, 4, 6, 8, 10, 12 and 14 are the elements of the domain of the given relation having their unique images, this relation is a function.

Here, domain = $\{2, 4, 6, 8, 10, 12, 14\}$ and range = $\{1, 2, 3, 4, 5, 6, 7\}$

(iii) $\{(1,3),(1,5),(2,5)\}$

Since the same first element i.e., 1 corresponds to two different images i.e., 3 and 5, this relation is not a function.

Question 2:

Find the domain and range of the following real function:

(i) f(x) = -|x| (ii) $f(x) = \sqrt{9 - x^2}$

Solution 2:

(i)
$$f(x) = -|x|, x \in \mathbb{R}$$

We know that $|x| = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x < 0 \end{cases}$

$$\therefore f(x) = -|x| = \begin{cases} -x, & \text{if } x \ge 0\\ x, & \text{if } x < 0 \end{cases}$$

Since f(x) is defined for $x \in \mathbf{R}$, the domain of f is **R**.

It can be observed that the range of f(x) = -|x| is all real numbers except positive real numbers.

 \therefore The range of f is $(-\infty, 0]$.

(ii)
$$f(x) = \sqrt{9 - x^2}$$

Since $\sqrt{9-x^2}$ is defined for all real numbers that are greater than or equal to -3 and less than or equal to 3, the domain of f(x) is $\{x: -3 \le x \le 3\}$ or [-3,3].

For any value of x such that $-3 \le x \le 3$, the value of f(x) will lie between 0 and 3.

 \therefore The range of f(x) is $\{x: 0 \le x \le 3\}$ or [0,3].

Question 3:

A function f is defined by f(x) = 2x-5. (i) f(0), (ii) f(7) (iii) f(-3)

Solution 3:

The given function is f(x) = 2x-5Therefore, (i) $f(0) = 2 \times 0 - 5 = 0 - 5 = -5$ (ii) $f(7) = 2 \times 7 - 5 = 14 - 5 = 9$ (iii) $f(-3) = 2 \times (-3) - 5 = -6 - 5 = -11$

Question 4:

The function 't' which maps temperature in degree Celsius into temperature in degree Fahrenheit is defined by $t(C) = \frac{9C}{5} + 32$. Find

	3	
(i) t (0)	(ii) $t(28)$	(iii) $t(-10)$
(iv) The value of C v	$t_{\rm then} t(C) = 212$	

(iv) The value of C, when t(C) = 212

Solution 4:

The given function is $t(C) = \frac{9C}{5} + 32$. Therefore, (i) $t(0) = \frac{9 \times 0}{5} + 32 = 0 + 32 = 32$ (ii) $t(28) = \frac{9 \times 28}{5} + 32 = \frac{252 + 160}{5} = \frac{412}{5} = 82.4$ (iii) $t(-10) = \frac{9 \times (-10)}{5} + 32 = 9 \times (-2) + 32 = -18 + 32 = 14$ (iv) It is given that t(C) = 212 $\therefore 212 = \frac{9C}{5} + 32$ $\Rightarrow \frac{9C}{5} = 212 - 32$ $\Rightarrow \frac{9C}{5} = 180$ $\Rightarrow 9C = 180 \times 5$ $\Rightarrow C = \frac{180 \times 5}{9} = 100$

Thus, the value of t, when t(C) = 212, is 100.

Question 5:

Find the range of each of the following functions. (i) $f(x) = 2-3x, x \in \mathbb{R}, x > 0.$

- (ii) $f(x) = x^2 + 2, x$, is a real number.
- (iii) f(x) = x, x is a real number.

Solution 5:

(i) $f(x) = 2 - 3x, x \in \mathbb{R}, x > 0$

The values of f(x) for various values of real numbers x > 0 can be written in the tabular form as

X	0.01	0.1	0.9	1	2	2.5	4	5	 1
f(x)	1.97	1.7	- 0.7	-1	- 4	- 5.5	- 10	-13	

Thus, it can be clearly observed that the range of *f* is the set of all real numbers less than 2. i.e., range of $f = (-\infty, 2)$

Alter:

Let x > 0 $\Rightarrow 3x > 0$ $\Rightarrow 2 - 3x < 2$

$$\Rightarrow f(x) < 2$$

$$\therefore$$
 Range of $f = (-\infty, 2)$

(ii) $f(x) = x^2 + 2$, x, is a real number

The values of f(x) for various of real numbers x can be written in the tabular form as

	x	0	±0.3	3 ±0.	8 ±1	±2	±3			
f(x)		2	2.09	2.64	4 3	6	11			
Х	ζ.	0		±0.3	±0.8	±1		±2	±3	
f	(x)	2		2.09	2.64	3		6	11	

Thus, it can be clearly observed that the range of f is the set of all real numbers greater than 2. i.e., range of $f = [2, \infty)$

Alter:

Let x be any real number. Accordingly,

 $x^{2} \ge 0$ $\Rightarrow x^{2} + 2 \ge 0 + 2$ $\Rightarrow x^{2} + 2 \ge 2$ $\Rightarrow f(x) \ge 2$

 \therefore Range of $f = [2, \infty)$

(iii) f(x) = x, x is a real number

It is clear that the range of *f* is the set of all real numbers. \therefore Range of $f = \mathbf{R}$.

Miscellaneous Exercise

Vashu Panwar

Question 1:

The relation f is defined by $f(x) = \begin{cases} x^2, \ 0 \le x \le 3\\ 3x, \ 3 \le x \le 10 \end{cases}$ The relation g is defined by $g(x) = \begin{cases} x^2, \ 0 \le x \le 2\\ 3x, \ 2 \le x \le 10 \end{cases}$

Show that f is a function and g is not a function.

Solution 1:

The relation f is defined as

$$f(x) = \begin{cases} x^2, \ 0 \le x \le 3\\ 3x, \ 3 \le x \le 10 \end{cases}$$

It is observed that for

 $0 \le x < 3, \qquad f(x) = x^2$

$$3 < x \le 10, \qquad f(x) = 3x$$

Also, at x = 3, $f(x) = 3^2 = 9$ or $f(x) = 3 \times 3 = 9$ i.e., at x = 3, f(x) = 9

Therefore, for $0 \le x \le 10$, the images of f(x) are unique. Thus, the given relation is a function.

The relation g is defined as

$$g(x) = \begin{cases} x^2, \ 0 \le x \le 2\\ 3x, \ 2 \le x \le 10 \end{cases}$$

It can be observed that for x = 2, $g(x) = 2^2 = 4$ and $g(x) = 3 \times 2 = 6$

Hence, element 2 of the domain of the relation g corresponds to two different images i.e., 4 and 6.

Hence, this relation is not a function.

Question 2:

If
$$f(x) = x^2$$
, find $\frac{f(1.1) - f(1)}{(1.1-1)}$

$$f(x) = x^{2}$$

$$\therefore \frac{f(1.1) - f(1)}{(1.1 - 1)} = \frac{(1.1)^{2} - (1)^{2}}{(1.1 - 1)} = \frac{1.21 - 1}{0.1} = \frac{0.21}{01} = 2.1$$

Question 3:

Find the domain of the function $f(x) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12}$

Solution 3:

The given function is $f(x) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12}$ $f(x) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12} = \frac{x^2 + 2x + 1}{(x - 6)(x - 2)}$

It can be seen that function f is defined for all real numbers except at x = 6 and x = 2. Hence, the domain of f is $\mathbf{R} - \{2, 6\}$.

Question 4:

Find the domain and the range of the real function f defined by $f(x) = \sqrt{(x-1)}$

Solution 4:

The given real function is $f(x) = \sqrt{(x-1)}$

It can be seen that $\sqrt{(x-1)}$ is defined for $f(x) = x \ge 1$.

Therefore, the domain of f is the set of all real numbers greater than or equal to 1 i.e., the domain of $f = [1, \infty)$.

As
$$x \ge 1 \Rightarrow (x-1) \ge 0 \Rightarrow \sqrt{(x-1)} \ge 0$$

Therefore, the range of f is the set of all real numbers greater than or equal to 0 i.e., the range of $f = [0, \infty)$.

Question 5:

Find the domain and the range of the real function f defined by f(x) = |x-1|.

Solution 5:

The given real function is f(x) = |x-1|.

It is clear that |x-1| is defined for all real numbers.

 \therefore Domain of $f = \mathbf{R}$

Also, for $x \in \mathbf{R} = |x-1|$ assumes all real numbers.

Hence, the range of f is the set of all non-negative real numbers.

Question 6:

Let $f = \left\{ \left(x, \frac{x^2}{1+x^2} \right) : x \in \mathbb{R} \right\}$

be a function from **R** into **R**. Determine the range of f.

Solution 6:

$$f = \left\{ \left(x, \frac{x^2}{1+x^2} \right) : x \in \mathbf{R} \right\}$$
$$= \left\{ \left(0, 0 \right), \left(\pm 0.5, \frac{1}{5} \right), \left(\pm 1, \frac{1}{2} \right), \left(\pm 1.5, \frac{9}{13} \right), \left(\pm 2, \frac{4}{5} \right), \left(3, \frac{9}{10} \right), \left(4, \frac{16}{17} \right), \dots \right\}$$

The range of *f* is the set of all second elements. It can be observed that all these elements are greater than or equal to 0 but less than 1. [Denominator is greater numerator]. Thus, range of f = [0, 1)

Question 7:

Let $f, g: \mathbb{R} \to \mathbb{R}$ be defined, respectively by f(x) = x + 1, g(x) = 2x - 3. Find f + g, f - g

and $\frac{f}{g}$.

Solution 7:

$$f,g: \mathbb{R} \to \mathbb{R} \text{ is defined as } f(x) = x+1, g(x) = 2x-3$$

$$(f+g)(x) = f(x) + g(x) = (x+1) + (2x-3) = 3x-2$$

$$\therefore (f+g)(x) = 3x-2$$

$$(f-g)(x) = f(x) - g(x) = (x+1) - (2x-3) = x+1-2x+3 = -x+4$$

$$\therefore (f-g)(x) = -x+4$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, g(x) \neq 0, x \in \mathbb{R}$$

$$\therefore \left(\frac{f}{g}\right)(x) = \frac{x+1}{2x-3}, 2x-3 \neq 0 \text{ or } 2x \neq 3$$

$$\therefore \left(\frac{f}{g}\right)(x) = \frac{x+1}{2x-3}, x \neq \frac{3}{2}$$

Question 8:

Let $f = \{(1,1), (2,3), (0,-1), (-1,-3)\}$ be a function from **Z** to **Z** defined by f(x) = ax+b, for some integers a, b. Determine a, b.

Solution 8:

 $f = \{(1,1), (2,3), (0,-1), (-1,-3)\} \text{ and } f(x) = ax+b$ $(1,1) \in f \Rightarrow f(1) = 1 \Rightarrow a \times 1+b = 1$ $\Rightarrow a+b=1$ $(0,-1) \in f \Rightarrow f(0) = -1 \Rightarrow a \times 0+b = -1$ On substituting b = -1 in a+b=1

We obtain $a + (-1) = 1 \implies a = 1 + 1 = 2$. Thus, the respective values of a and b are 2 and -1.

Question 9:

Let R be a relation from N to N defined by $R = \{(a,b): a, b \in \mathbb{N} \text{ and } a = b^2\}$. Are the following true?

(i) $(a,a) \in R$, for all $a \in \mathbb{N}$

(ii) $(a,b) \in R$, implies $(b,a) \in R$

(iii) $(a,b) \in R, (b,c) \in R$ implies $(a,c) \in R$.

Justify your answer in each case.

Solution 9:

 $R = \{(a,b): a, b \in \mathbb{N} \text{ and } a = b^2\}$

(i) It can be seen that $2 \in \mathbf{N}$; however, $2 \neq 2^2 = 4$.

Therefore, the statement " $(a, a) \in R$, for all $a \in \mathbb{N}$ " is not true.

(ii) It can be seen that $(9,3) \in \mathbb{N}$ because $9,3 \in \mathbb{N}$ and $9=3^2$. Now, $3 \neq 9^2 = 81$; therefore,

(3,9)∉**N**

Therefore, the statement " $(a,b) \in R$, implies " $(b,a) \in R$ " is not true.

(iii) It can be seen that $(9,3) \in R, (16,4) \in R$ because $9,3,16,4 \in \mathbb{N}$ and $9=3^2$ and $16=4^2$.

Now, $9 \neq 4^2 = 16$; therefore, $(9,4) \notin \mathbb{N}$

Therefore, the statement " $(a,b) \in R, (b,c) \in R$ implies $(a,c) \in R$ " is not true.

Question 10:

Let $A = \{1, 2, 3, 4\}, B = \{1, 5, 9, 11, 15, 16\}$ and $f = \{(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)\}$. Are the following true? (i) *f* is a relation from A to B (ii) *f* is a function from A to B Justify your answer in each case.

Solution 10:

 $A = \{1, 2, 3, 4\}$ and $B = \{1, 5, 9, 11, 15, 16\}$

 $\therefore A \times B = \{(1,1), (1,5), (1,9), (1,11), (1,15), (1,16), (2,1), (2,5), (2,9), (2,11), (2,15), (2,16) \\ (3,1), (3,5), (3,9), (3,11), (3,15), (3,16), (4,1), (4,5), (4,9), (4,11), (4,15), (4,16)\}$

It is given that $f = \{(1,5), (2,9), (3,1), (4,5), (2,11)\}$

(i) A relation from a non-empty set A to a non-empty set B is a subset of the Cartesian product $A \times B$.

Thus, f is a relation from A to B.

(ii) Since the same first element i.e, 2 corresponds to two different images i.e., 9 and 11, relation f is not a function.

Question 11:

Let f be the subset of $\mathbb{Z} \times \mathbb{Z}$ defined by $f = \{(ab, a+b): a, b \in \mathbb{Z}\}$. If f a function from \mathbb{Z} to \mathbb{Z} : Justify your answer.

Solution 11:

The relation f is defined as $f = \{(ab, a+b): a, b \in \mathbb{Z}\}$

We know that a relation *f* from a set A to a set B is said to be a function if every element of set A has unique images in set B.

Since $(2, 6, -2, -6 \in \mathbb{Z}, (2 \times 6, 2 + 6), (-2 \times -6, -2 + -6)) \in f$ i.e., $(12, 8), (12, -8) \in f$

It can be seen that the same first element i.e., 12 corresponds to two different images i.e., 8 and -8. Thus, relation f is not a function.

Question 12:

Let $A = \{9, 10, 11, 12, 13\}$ and let $f : A \to \mathbb{N}$ be defined by f(n) = the highest prime factor of n. Find the range of f.

Solution 12:

 $A = \{9, 10, 11, 12, 13\}$ and let $f : A \to \mathbb{N}$ is defined as f(n) = The highest prime factor of n

Prime factor of 9 = 3Prime factors of 10 = 2, 5Prime factor of 11 = 11Prime factor of 12 = 2, 3Prime factor of 13 = 13 $\therefore f(9) =$ The highest prime factor of 9 = 3 f(10) = The highest prime factor of 10 = 5 f(11) = The highest prime factor of 11 = 11 f(12) = The highest prime factor 12 = 3 f(13) = The highest prime factor of 13 = 13The range of f is the set of all f(n), where $n \in A$.

:. Range of $f = \{3, 5, 11, 13\}$